Transparent Serverless execution of Python multiprocessing applications

18 May 2022  ·  Aitor Arjona, Gerard Finol, Pedro Garcia-Lopez ·

Access transparency means that both local and remote resources are accessed using identical operations. With transparency, unmodified single-machine applications could run over disaggregated compute, storage, and memory resources. Hiding the complexity of distributed systems through transparency would have great benefits, like scaling-out local-parallel scientific applications over flexible disaggregated resources in the Cloud. This paper presents a performance evaluation where we assess the feasibility of access transparency over state-of-the-art Cloud disaggregated resources for Python multiprocessing applications. We have interfaced the multiprocessing module with an implementation that transparently runs processes on serverless functions and uses an in-memory data store for shared state. To evaluate transparency, we run in the Cloud four unmodified applications: Uber Research's Evolution Strategies, Baselines-AI's Proximal Policy Optimization, Pandaral.lel's dataframe, and ScikitLearn's Hyperparameter tuning. We compare execution time and scalability of the same application running over disaggregated resources using our library, with the single-machine Python multiprocessing libraries in a large VM. For equal resources, applications efficiently using message-passing abstractions achieve comparable results despite the significant overheads of remote communication. Other shared-memory intensive applications do not perform due to high remote memory latency. The results show that Python's multiprocessing library design is an enabler towards transparency: legacy applications using efficient disaggregated abstractions can transparently scale beyond VM limited resources for increased parallelism without changing the underlying code or architecture.

PDF Abstract

Categories


Distributed, Parallel, and Cluster Computing

Datasets


  Add Datasets introduced or used in this paper