Steganalysis via a Convolutional Neural Network using Large Convolution Filters for Embedding Process with Same Stego Key
For the past few years, in the race between image steganography and steganalysis, deep learning has emerged as a very promising alternative to steganalyzer approaches based on rich image models combined with ensemble classifiers. A key knowledge of image steganalyzer, which combines relevant image features and innovative classification procedures, can be deduced by a deep learning approach called Convolutional Neural Networks (CNN). These kind of deep learning networks is so well-suited for classification tasks based on the detection of variations in 2D shapes that it is the state-of-the-art in many image recognition problems. In this article, we design a CNN-based steganalyzer for images obtained by applying steganography with a unique embedding key. This one is quite different from the previous study of {\em Qian et al.} and its successor, namely {\em Pibre et al.} The proposed architecture embeds less convolutions, with much larger filters in the final convolutional layer, and is more general: it is able to deal with larger images and lower payloads. For the "same embedding key" scenario, our proposal outperforms all other steganalyzers, in particular the existing CNN-based ones, and defeats many state-of-the-art image steganography schemes.
PDF Abstract