Social Media-based User Embedding: A Literature Review

26 Jun 2019  ·  Pan Shimei, Ding Tao ·

Automated representation learning is behind many recent success stories in machine learning. It is often used to transfer knowledge learned from a large dataset (e.g., raw text) to tasks for which only a small number of training examples are available... In this paper, we review recent advance in learning to represent social media users in low-dimensional embeddings. The technology is critical for creating high performance social media-based human traits and behavior models since the ground truth for assessing latent human traits and behavior is often expensive to acquire at a large scale. In this survey, we review typical methods for learning a unified user embeddings from heterogeneous user data (e.g., combines social media texts with images to learn a unified user representation). Finally we point out some current issues and future directions. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Social and Information Networks

Datasets


  Add Datasets introduced or used in this paper