Similarity Learning with Higher-Order Graph Convolutions for Brain Network Analysis

Learning a similarity metric has gained much attention recently, where the goal is to learn a function that maps input patterns to a target space while preserving the semantic distance in the input space. While most related work focused on images, we focus instead on learning a similarity metric for neuroimages, such as fMRI and DTI images. We propose an end-to-end similarity learning framework called Higher-order Siamese GCN for multi-subject fMRI data analysis. The proposed framework learns the brain network representations via a supervised metric-based approach with siamese neural networks using two graph convolutional networks as the twin networks. Our proposed framework performs higher-order convolutions by incorporating higher-order proximity in graph convolutional networks to characterize and learn the community structure in brain connectivity networks. To the best of our knowledge, this is the first community-preserving similarity learning framework for multi-subject brain network analysis. Experimental results on four real fMRI datasets demonstrate the potential use cases of the proposed framework for multi-subject brain analysis in health and neuropsychiatric disorders. Our proposed approach achieves an average AUC gain of 75% compared to PCA, an average AUC gain of 65.5% compared to Spectral Embedding, and an average AUC gain of 24.3% compared to S-GCN across the four datasets, indicating promising application in clinical investigation and brain disease diagnosis.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods