SenseCare: A Research Platform for Medical Image Informatics and Interactive 3D Visualization

3 Apr 2020  ·  Qi Duan, Guotai Wang, Rui Wang, Chao Fu, Xinjun Li, Maoliang Gong, Xinglong Liu, Qing Xia, Xiaodi Huang, Zhiqiang Hu, Ning Huang, Shaoting Zhang ·

Clinical research on smart healthcare has an increasing demand for intelligent and clinic-oriented medical image computing algorithms and platforms that support various applications. To this end, we have developed SenseCare research platform for smart healthcare, which is designed to boost translational research on intelligent diagnosis and treatment planning in various clinical scenarios. To facilitate clinical research with Artificial Intelligence (AI), SenseCare provides a range of AI toolkits for different tasks, including image segmentation, registration, lesion and landmark detection from various image modalities ranging from radiology to pathology. In addition, SenseCare is clinic-oriented and supports a wide range of clinical applications such as diagnosis and surgical planning for lung cancer, pelvic tumor, coronary artery disease, etc. SenseCare provides several appealing functions and features such as advanced 3D visualization, concurrent and efficient web-based access, fast data synchronization and high data security, multi-center deployment, support for collaborative research, etc. In this paper, we will present an overview of SenseCare as an efficient platform providing comprehensive toolkits and high extensibility for intelligent image analysis and clinical research in different application scenarios.

PDF Abstract
No code implementations yet. Submit your code now


Human-Computer Interaction Image and Video Processing


  Add Datasets introduced or used in this paper