Robust Beamforming for RIS-aided Communications: Gradient-based Manifold Meta Learning

16 Feb 2024  ·  Fenghao Zhu, Xinquan Wang, Chongwen Huang, Zhaohui Yang, Xiaoming Chen, Ahmed Alhammadi, Zhaoyang Zhang, Chau Yuen, Mérouane Debbah ·

Reconfigurable intelligent surface (RIS) has become a promising technology to realize the programmable wireless environment via steering the incident signal in fully customizable ways. However, a major challenge in RIS-aided communication systems is the simultaneous design of the precoding matrix at the base station (BS) and the phase shifting matrix of the RIS elements. This is mainly attributed to the highly non-convex optimization space of variables at both the BS and the RIS, and the diversity of communication environments. Generally, traditional optimization methods for this problem suffer from the high complexity, while existing deep learning based methods are lack of robustness in various scenarios. To address these issues, we introduce a gradient-based manifold meta learning method (GMML), which works without pre-training and has strong robustness for RIS-aided communications. Specifically, the proposed method fuses meta learning and manifold learning to improve the overall spectral efficiency, and reduce the overhead of the high-dimensional signal process. Unlike traditional deep learning based methods which directly take channel state information as input, GMML feeds the gradients of the precoding matrix and phase shifting matrix into neural networks. Coherently, we design a differential regulator to constrain the phase shifting matrix of the RIS. Numerical results show that the proposed GMML can improve the spectral efficiency by up to 7.31\%, and speed up the convergence by 23 times faster compared to traditional approaches. Moreover, they also demonstrate remarkable robustness and adaptability in dynamic settings.

PDF Abstract


Information Theory Signal Processing Information Theory


  Add Datasets introduced or used in this paper