PUFFINN: Parameterless and Universally Fast FInding of Nearest Neighbors

28 Jun 2019  ·  Martin Aumüller, Tobias Christiani, Rasmus Pagh, Michael Vesterli ·

We present PUFFINN, a parameterless LSH-based index for solving the $k$-nearest neighbor problem with probabilistic guarantees. By parameterless we mean that the user is only required to specify the amount of memory the index is supposed to use and the result quality that should be achieved. The index combines several heuristic ideas known in the literature. By small adaptions to the query algorithm, we make heuristics rigorous. We perform experiments on real-world and synthetic inputs to evaluate implementation choices and show that the implementation satisfies the quality guarantees while being competitive with other state-of-the-art approaches to nearest neighbor search. We describe a novel synthetic data set that is difficult to solve for almost all existing nearest neighbor search approaches, and for which PUFFINN significantly outperform previous methods.

PDF Abstract


Data Structures and Algorithms Computational Geometry


  Add Datasets introduced or used in this paper