Percolation Threshold for Competitive Influence in Random Networks

21 Apr 2019  ·  Peng Yu-Hsien, Lu Ping-En, Chang Cheng-Shang, Lee Duan-Shin ·

In this paper, we propose a new averaging model for modeling the competitive influence of $K$ candidates among $n$ voters in an election process. For such an influence propagation model, we address the question of how many seeded voters a candidate needs to place among undecided voters in order to win an election... We show that for a random network generated from the stochastic block model, there exists a percolation threshold for a candidate to win the election if the number of seeded voters placed by the candidate exceeds the threshold. By conducting extensive experiments, we show that our theoretical percolation thresholds are very close to those obtained from simulations for random networks and the errors are within $10\%$ for a real-world network. read more

PDF Abstract
No code implementations yet. Submit your code now


Social and Information Networks Physics and Society


  Add Datasets introduced or used in this paper