On Known-Plaintext Attacks to a Compressed Sensing-based Encryption: A Quantitative Analysis

25 Jun 2015  ·  Cambareri Valerio, Mangia Mauro, Pareschi Fabio, Rovatti Riccardo, Setti Gianluca ·

Despite the linearity of its encoding, compressed sensing may be used to provide a limited form of data protection when random encoding matrices are used to produce sets of low-dimensional measurements (ciphertexts). In this paper we quantify by theoretical means the resistance of the least complex form of this kind of encoding against known-plaintext attacks... For both standard compressed sensing with antipodal random matrices and recent multiclass encryption schemes based on it, we show how the number of candidate encoding matrices that match a typical plaintext-ciphertext pair is so large that the search for the true encoding matrix inconclusive. Such results on the practical ineffectiveness of known-plaintext attacks underlie the fact that even closely-related signal recovery under encoding matrix uncertainty is doomed to fail. Practical attacks are then exemplified by applying compressed sensing with antipodal random matrices as a multiclass encryption scheme to signals such as images and electrocardiographic tracks, showing that the extracted information on the true encoding matrix from a plaintext-ciphertext pair leads to no significant signal recovery quality increase. This theoretical and empirical evidence clarifies that, although not perfectly secure, both standard compressed sensing and multiclass encryption schemes feature a noteworthy level of security against known-plaintext attacks, therefore increasing its appeal as a negligible-cost encryption method for resource-limited sensing applications. read more

PDF Abstract
No code implementations yet. Submit your code now


Information Theory Information Theory


  Add Datasets introduced or used in this paper