On integral probability metrics, φ-divergences and binary classification

18 Jan 2009  ·  Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, Gert R. G. Lanckriet ·

A class of distance measures on probabilities -- the integral probability metrics (IPMs) -- is addressed: these include the Wasserstein distance, Dudley metric, and Maximum Mean Discrepancy. IPMs have thus far mostly been used in more abstract settings, for instance as theoretical tools in mass transportation problems, and in metrizing the weak topology on the set of all Borel probability measures defined on a metric space. Practical applications of IPMs are less common, with some exceptions in the kernel machines literature. The present work contributes a number of novel properties of IPMs, which should contribute to making IPMs more widely used in practice, for instance in areas where $\phi$-divergences are currently popular. First, to understand the relation between IPMs and $\phi$-divergences, the necessary and sufficient conditions under which these classes intersect are derived: the total variation distance is shown to be the only non-trivial $\phi$-divergence that is also an IPM. This shows that IPMs are essentially different from $\phi$-divergences. Second, empirical estimates of several IPMs from finite i.i.d. samples are obtained, and their consistency and convergence rates are analyzed. These estimators are shown to be easily computable, with better rates of convergence than estimators of $\phi$-divergences. Third, a novel interpretation is provided for IPMs by relating them to binary classification, where it is shown that the IPM between class-conditional distributions is the negative of the optimal risk associated with a binary classifier. In addition, the smoothness of an appropriate binary classifier is proved to be inversely related to the distance between the class-conditional distributions, measured in terms of an IPM.

PDF Abstract
No code implementations yet. Submit your code now


Information Theory Information Theory


  Add Datasets introduced or used in this paper