MPU: Towards Bandwidth-abundant SIMT Processor via Near-bank Computing

11 Mar 2021  ·  Xinfeng Xie, Peng Gu, Yufei Ding, Dimin Niu, Hongzhong Zheng, Yuan Xie ·

With the growing number of data-intensive workloads, GPU, which is the state-of-the-art single-instruction-multiple-thread (SIMT) processor, is hindered by the memory bandwidth wall. To alleviate this bottleneck, previously proposed 3D-stacking near-bank computing accelerators benefit from abundant bank-internal bandwidth by bringing computations closer to the DRAM banks. However, these accelerators are specialized for certain application domains with simple architecture data paths and customized software mapping schemes. For general purpose scenarios, lightweight hardware designs for diverse data paths, architectural supports for the SIMT programming model, and end-to-end software optimizations remain challenging. To address these issues, we propose MPU (Memory-centric Processing Unit), the first SIMT processor based on 3D-stacking near-bank computing architecture. First, to realize diverse data paths with small overheads while leveraging bank-level bandwidth, MPU adopts a hybrid pipeline with the capability of offloading instructions to near-bank compute-logic. Second, we explore two architectural supports for the SIMT programming model, including a near-bank shared memory design and a multiple activated row-buffers enhancement. Third, we present an end-to-end compilation flow for MPU to support CUDA programs. To fully utilize MPU's hybrid pipeline, we develop a backend optimization for the instruction offloading decision. The evaluation results of MPU demonstrate 3.46x speedup and 2.57x energy reduction compared with an NVIDIA Tesla V100 GPU on a set of representative data-intensive workloads.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Hardware Architecture

Datasets


  Add Datasets introduced or used in this paper