Lower Bounds for Approximating the Matching Polytope

28 Nov 2017  ·  Sinha Makrand ·

We prove that any extended formulation that approximates the matching polytope on $n$-vertex graphs up to a factor of $(1+\varepsilon)$ for any $\frac2n \le \varepsilon \le 1$ must have at least $\binom{n}{{\alpha}/{\varepsilon}}$ defining inequalities where $0<\alpha<1$ is an absolute constant. This is tight as exhibited by the $(1+\varepsilon)$ approximating linear program obtained by dropping the odd set constraints of size larger than $({1+\varepsilon})/{\varepsilon}$ from the description of the matching polytope... Previously, a tight lower bound of $2^{\Omega(n)}$ was only known for $\varepsilon = O\left(\frac{1}{n}\right)$ [Rothvoss, STOC '14; Braun and Pokutta, IEEE Trans. Information Theory '15] whereas for $\frac2n \le \varepsilon \le 1$, the best lower bound was $2^{\Omega\left({1}/{\varepsilon}\right)}$ [Rothvoss, STOC '14]. The key new ingredient in our proof is a close connection to the non-negative rank of a lopsided version of the unique disjointness matrix. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Computational Complexity

Datasets


  Add Datasets introduced or used in this paper