Instagram photos reveal predictive markers of depression

10 Aug 2016  ·  Andrew G. Reece, Christopher M. Danforth ·

Using Instagram data from 166 individuals, we applied machine learning tools to successfully identify markers of depression. Statistical features were computationally extracted from 43,950 participant Instagram photos, using color analysis, metadata components, and algorithmic face detection. Resulting models outperformed general practitioners' average diagnostic success rate for depression. These results held even when the analysis was restricted to posts made before depressed individuals were first diagnosed. Photos posted by depressed individuals were more likely to be bluer, grayer, and darker. Human ratings of photo attributes (happy, sad, etc.) were weaker predictors of depression, and were uncorrelated with computationally-generated features. These findings suggest new avenues for early screening and detection of mental illness.

PDF Abstract
No code implementations yet. Submit your code now


Social and Information Networks Physics and Society


  Add Datasets introduced or used in this paper