General Partial Label Learning via Dual Bipartite Graph Autoencoder

5 Jan 2020  ·  Brian Chen, Bo Wu, Alireza Zareian, Hanwang Zhang, Shih-Fu Chang ·

We formulate a practical yet challenging problem: General Partial Label Learning (GPLL). Compared to the traditional Partial Label Learning (PLL) problem, GPLL relaxes the supervision assumption from instance-level -- a label set partially labels an instance -- to group-level: 1) a label set partially labels a group of instances, where the within-group instance-label link annotations are missing, and 2) cross-group links are allowed -- instances in a group may be partially linked to the label set from another group. Such ambiguous group-level supervision is more practical in real-world scenarios as additional annotation on the instance-level is no longer required, e.g., face-naming in videos where the group consists of faces in a frame, labeled by a name set in the corresponding caption. In this paper, we propose a novel graph convolutional network (GCN) called Dual Bipartite Graph Autoencoder (DB-GAE) to tackle the label ambiguity challenge of GPLL. First, we exploit the cross-group correlations to represent the instance groups as dual bipartite graphs: within-group and cross-group, which reciprocally complements each other to resolve the linking ambiguities. Second, we design a GCN autoencoder to encode and decode them, where the decodings are considered as the refined results. It is worth noting that DB-GAE is self-supervised and transductive, as it only uses the group-level supervision without a separate offline training stage. Extensive experiments on two real-world datasets demonstrate that DB-GAE significantly outperforms the best baseline over absolute 0.159 F1-score and 24.8% accuracy. We further offer analysis on various levels of label ambiguities.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Partial Label Learning MPII Movie Description DB-GAE F1-Score 0.768 # 1
Accuracy 76.5 # 1
Partial Label Learning M-VAD Names DB-GAE Accuracy 90.3 # 1

Methods