Floating Isogeometric Analysis

14 Oct 2021  ·  Helge C. Hille, Siddhant Kumar, Laura De Lorenzis ·

We propose Floating Isogeometric Analysis (FLIGA), which extends the concepts of IGA to Lagrangian extreme deformation analysis. The method is based on a novel tensor-product construction of B-Splines for the update of the basis functions in one direction of the parametric space... With basis functions 'floating' deformation-dependently in this direction, mesh distortion is overcome for problems in which extreme deformations occur predominantly along the associated (possibly curved) physical axis. In doing so, we preserve the numerical advantages of splines over many meshless basis functions, while avoiding remeshing. We employ material point integration for numerical quadrature attributing a Lagrangian character to our technique. The paper introduces the method and reviews the fundamental properties of the FLIGA basis functions, including a numerical patch test. The performance of FLIGA is then numerically investigated on the benchmark of Newtonian and viscoelastic Taylor-Couette flow. Finally, we simulate a viscoelastic extrusion-based additive manufacturing process, which served as the original motivation for the new approach. read more

PDF Abstract
No code implementations yet. Submit your code now


Computational Engineering, Finance, and Science


  Add Datasets introduced or used in this paper