Enabling Image Recognition on Constrained Devices Using Neural Network Pruning and a CycleGAN

11 Sep 2020  ·  August Lidfelt, Daniel Isaksson, Ludwig Hedlund, Simon Åberg, Markus Borg, Erik Larsson ·

Smart cameras are increasingly used in surveillance solutions in public spaces. Contemporary computer vision applications can be used to recognize events that require intervention by emergency services. Smart cameras can be mounted in locations where citizens feel particularly unsafe, e.g., pathways and underpasses with a history of incidents. One promising approach for smart cameras is edge AI, i.e., deploying AI technology on IoT devices. However, implementing resource-demanding technology such as image recognition using deep neural networks (DNN) on constrained devices is a substantial challenge. In this paper, we explore two approaches to reduce the need for compute in contemporary image recognition in an underpass. First, we showcase successful neural network pruning, i.e., we retain comparable classification accuracy with only 1.1\% of the neurons remaining from the state-of-the-art DNN architecture. Second, we demonstrate how a CycleGAN can be used to transform out-of-distribution images to the operational design domain. We posit that both pruning and CycleGANs are promising enablers for efficient edge AI in smart cameras.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods