DiT-SGCR: Directed Temporal Structural Representation with Global-Cluster Awareness for Ethereum Malicious Account Detection

25 Jun 2025  ·  Ye Tian, Liangliang Song, Peng Qian, Yanbin Wang, Jianguo Sun, Yifan Jia ·

The detection of malicious accounts on Ethereum - the preeminent DeFi platform - is critical for protecting digital assets and maintaining trust in decentralized finance. Recent advances highlight that temporal transaction evolution reveals more attack signatures than static graphs. However, current methods either fail to model continuous transaction dynamics or incur high computational costs that limit scalability to large-scale transaction networks. Furthermore, current methods fail to consider two higher-order behavioral fingerprints: (1) direction in temporal transaction flows, which encodes money movement trajectories, and (2) account clustering, which reveals coordinated behavior of organized malicious collectives. To address these challenges, we propose DiT-SGCR, an unsupervised graph encoder for malicious account detection. Specifically, DiT-SGCR employs directional temporal aggregation to capture dynamic account interactions, then coupled with differentiable clustering and graph Laplacian regularization to generate high-quality, low-dimensional embeddings. Our approach simultaneously encodes directional temporal dynamics, global topology, and cluster-specific behavioral patterns, thereby enhancing the discriminability and robustness of account representations. Furthermore, DiT-SGCR bypasses conventional graph propagation mechanisms, yielding significant scalability advantages. Extensive experiments on three datasets demonstrate that DiT-SGCR consistently outperforms state-of-the-art methods across all benchmarks, achieving F1-score improvements ranging from 3.62% to 10.83%.

PDF Abstract

Categories


Computational Engineering, Finance, and Science

Datasets


  Add Datasets introduced or used in this paper