Delhi air quality prediction using LSTM deep learning models with a focus on COVID-19 lockdown

21 Feb 2021  ·  Animesh Tiwari, Rishabh Gupta, Rohitash Chandra ·

Air pollution has a wide range of implications on agriculture, economy, road accidents, and health. In this paper, we use novel deep learning methods for short-term (multi-step-ahead) air-quality prediction in selected parts of Delhi, India. Our deep learning methods comprise of long short-term memory (LSTM) network models which also include some recent versions such as bidirectional-LSTM and encoder-decoder LSTM models. We use a multivariate time series approach that attempts to predict air quality for 10 prediction horizons covering total of 80 hours and provide a long-term (one month ahead) forecast with uncertainties quantified. Our results show that the multivariate bidirectional-LSTM model provides best predictions despite COVID-19 impact on the air-quality during full and partial lockdown periods. The effect of COVID-19 on the air quality has been significant during full lockdown; however, there was unprecedented growth of poor air quality afterwards.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods