#BIS-Hardness for 2-Spin Systems on Bipartite Bounded Degree Graphs in the Tree Nonuniqueness Region

21 Sep 2015  ·  Cai Jin-Yi, Galanis Andreas, Goldberg Leslie Ann, Guo Heng, Jerrum Mark, Stefankovic Daniel, Vigoda Eric ·

Counting independent sets on bipartite graphs (#BIS) is considered a canonical counting problem of intermediate approximation complexity. It is conjectured that #BIS neither has an FPRAS nor is as hard as #SAT to approximate... We study #BIS in the general framework of two-state spin systems on bipartite graphs. We define two notions, nearly-independent phase-correlated spins and unary symmetry breaking. We prove that it is #BIS-hard to approximate the partition function of any 2-spin system on bipartite graphs supporting these two notions. As a consequence, we classify the complexity of approximating the partition function of antiferromagnetic 2-spin systems on bounded-degree bipartite graphs. read more

PDF Abstract
No code implementations yet. Submit your code now


Computational Complexity


  Add Datasets introduced or used in this paper