We show that for any odd $k$ and any instance of the Max-kXOR constraint satisfaction problem, there is an efficient algorithm that finds an assignment satisfying at least a $\frac{1}{2} + \Omega(1/\sqrt{D})$ fraction of constraints, where $D$ is a bound on the number of constraints that each variable occurs in. This improves both qualitatively and quantitatively on the recent work of Farhi, Goldstone, and Gutmann (2014), which gave a \emph{quantum} algorithm to find an assignment satisfying a $\frac{1}{2} + \Omega(D^{-3/4})$ fraction of the equations... (read more)

PDF Abstract- COMPUTATIONAL COMPLEXITY

- DATA STRUCTURES AND ALGORITHMS