Aqua-Sim Fourth Generation: Towards General and Intelligent Simulation for Underwater Acoustic Networks
Simulators are essential to troubleshoot and optimize Underwater Acoustic Network (UAN) schemes (network protocols and communication technologies) before real field experiments. However, due to programming differences between the above two contents, most existing simulators concentrate on one while weakening the other, leading to non-generic simulations and biased performance results. Moreover, novel UAN schemes increasingly integrate Artificial Intelligence (AI) techniques, yet existing simulators lack support for necessary AI frameworks, failing to train and evaluate these intelligent methods. On the other hand, these novel schemes consider more UAN characteristics involving more complex parameter configurations, which also challenges simulators in flexibility and fineness. To keep abreast of advances in UANs, we propose the Fourth Generation (FG) ns-3-based simulator Aqua-Sim~FG, enhancing the general and intelligent simulation ability. On the basis of retaining previous generations' functions, we design a new general architecture, which is compatible with various programming languages, including MATLAB, C++, and Python. In this way, Aqua-Sim~FG provides a general environment to simulate communication technologies, network protocols, and AI models simultaneously. In addition, we expand six new features from node and communication levels by considering the latest UAN methods' requirements, which enhances the simulation flexibility and fineness of Aqua-Sim~FG. Experimental results show that Aqua-Sim~FG can simulate UANs' performance realistically, reflect intelligent methods' problems in real-ocean scenarios, and provide more effective troubleshooting and optimization for actual UANs. The basic simulator is available at https://github.com/JLU-smartocean/aqua-sim-fg.
PDF Abstract