Adaptive Nonlinear Control of Fixed-Wing VTOL with Airflow Vector Sensing

17 Mar 2020  ·  Shi Xichen, Spieler Patrick, Tang Ellande, Lupu Elena-Sorina, Tokumaru Phillip, Chung Soon-Jo ·

Fixed-wing vertical take-off and landing (VTOL) aircraft pose a unique control challenge that stems from complex aerodynamic interactions between wings and rotors. Thus, accurate estimation of external forces is indispensable for achieving high performance flight. In this paper, we present a composite adaptive nonlinear tracking controller for a fixed-wing VTOL. The method employs online adaptation of linear force models, and generates accurate estimation for wing and rotor forces in real-time based on information from a three-dimensional airflow sensor. The controller is implemented on a custom-built fixed-wing VTOL, which shows improved velocity tracking and force prediction during the transition stage from hover to forward flight, compared to baseline flight controllers.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Robotics Systems and Control Systems and Control

Datasets


  Add Datasets introduced or used in this paper