Achieving Efficient and Secure Data Acquisition for Cloud-supported Internet of Things in Smart Grid

25 Oct 2018  ·  Guan Zhitao, Li Jing, Wu Longfei, Zhang Yue, Wu Jun, Du Xiaojiang ·

Cloud-supported Internet of Things (Cloud-IoT) has been broadly deployed in smart grid systems. The IoT front-ends are responsible for data acquisition and status supervision, while the substantial amount of data is stored and managed in the cloud server. Achieving data security and system efficiency in the data acquisition and transmission process are of great significance and challenging, because the power grid-related data is sensitive and in huge amount. In this paper, we present an efficient and secure data acquisition scheme based on CP-ABE (Ciphertext Policy Attribute Based Encryption). Data acquired from the terminals will be partitioned into blocks and encrypted with its corresponding access sub-tree in sequence, thereby the data encryption and data transmission can be processed in parallel. Furthermore, we protect the information about the access tree with threshold secret sharing method, which can preserve the data privacy and integrity from users with the unauthorized sets of attributes. The formal analysis demonstrates that the proposed scheme can fulfill the security requirements of the Cloud-supported IoT in smart grid. The numerical analysis and experimental results indicate that our scheme can effectively reduce the time cost compared with other popular approaches.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Cryptography and Security

Datasets


  Add Datasets introduced or used in this paper